

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

3rd March 2023

Our Reference: 22600:NB1481

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING OFFICER CENTRAL – STAGE 3A (OFFICER)

Please find attached our Report No's 22600/R001 to 22600/R006 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in August 2022 and was completed in October 2022.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

	CHNICAL SERVICES ue, Croydon 3136			Job No Report No Date Issued	22600 22600/R001 13/09/2022
Client Project Location	WINSLOW CONSTRUCTOR OFFICER CENTRAL - STAGI OFFICER	S PTY LTD (CAMPBELLFIELD) E 3A		Tested by Date tested Checked by	SB 29/08/22 JHF
Feature	EARTHWORKS	Layer thickness	200 mm	Time	e: 12:00

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		1	2	3	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	2.11	2.11	2.11	-	-	-
Field moisture content	%	15.8	15.9	15.6	-	-	-
Test procedure AS 1289.5.7.1							
		1	2	3	-	-	-
Test No Compactive effort			1	Stan	- dard	I	-
Test No Compactive effort Oversize rock retained on sieve	mm	19.0	19.0	Stan 19.0		-	-
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	wet	19.0 0	19.0 0	Stan 19.0 0			-
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	wet t/m³	19.0	19.0	Stan 19.0		-	- - - - -
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet	19.0 0	19.0 0	Stan 19.0 0			- - - - - - -
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	wet t/m ³ t/m ³	19.0 0 2.15 - 16.5 0.5% dry	19.0 0 2.11 - 16.0 0.0%	Stan 19.0 0 2.14 - 14.5 1.0% wet	dard - - - - -	- - - - -	- - - - -

Material description

No 1 - 3 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136ClientWINSLOW CONSTRUCProjectOFFICER CENTRAL - SLocationOFFICER	Da Te Da	eport No ate Issued ested by ate tested necked by	22600/R00 13/09/2022 SB 02/09/22 JHF				
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	14:00
Test procedure AS 1289.2.1.1 & 5.8.	1		_				
Test No		4	5	6	7	8	9
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	2.16	2.15	2.19	2.18	2.07	2.08
Field moisture content	%	14.8	16.1	18.8	18.7	16.2	17.4
Test procedure AS 1289.5.7.1							
Test No		4	5	6	7	8	9
Compactive effort			Ŭ		dard	Ű	Ű
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m ³	2.20	2.19	2.22	2.21	2.09	2.09
Adjusted Peak Converted Wet Density	t/m ³	-	-	-	-	-	-
Optimum Moisture Content	%	15.5	16.0	19.5	19.0	17.5	19.0
			1	1	1		
Moisture Variation From		1.0%	0.0%	0.5%	0.0%	1.5%	1.5%
Optimum Moisture Content		dry	01070	dry	01070	dry	dry
density and moisture ratio results	relate o		il to the dept		not to the fu		
Density Ratio (R _{HD})	%	98.5	98.0	98.5	98.5	99.5	99.5
	70						
Material description							
No 4 - 9 Clay Fill							

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

					Cł	necked by	JHF
THWORKS		Lay	er thickness	200	mm	Time:	15:00
S 1289.2.1.1 & 5.8.	1						
		10	11	12	13	14	15
		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
below FSL							
	mm	175	175	175	175	175	175
	t∕m³	2.16					2.16
ent	%	14.6	16.8	13.6	13.2	16.9	18.7
5 1289.5.7.1							
		10	11			14	15
	тт						19.0
	wet						0
		2.16	2.20	2.20	2.20	2.16	2.18
		-	-	-	-	-	-
Content	%	16.5	19.0	16.0	15.5	19.0	19.0
riation From		2.0%	2.0%	2.5%	2.5%	2.0%	0.5%
isture Content		dry	dry	dry	dry	dry	dry
oisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the ful	I depth of the	e layer
_ю)	%	100.0	98.5	98.5	98.5	99.0	99.5
	below FSL ent S 1289.5.7.1 ed on sieve material et Density verted Wet Density Content criation From isture Content	mm t/m³ ent % S 1289.5.7.1 eed on sieve mm material wet et Density t/m³ verted Wet Density t/m³ Content %	10REFER TO FIGURE 1below FSLmmt/m³2.16t/m³2.16ent%14.6S 1289.5.7.110ed on sievemm10materialwet0t/m³2.16verted Wet Densityt/m³2.0%sture Content%10vertation From isture Content2.0% dryvoisture ratio results relate only to the so	10 11 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 below FSL	10 11 12 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 below FSL	10 11 12 13 REFER TO FIGURE 1 TO FIGURE 1 FIGURE 1 FIGURE 1 below FSL 175 175 175 175 mm 175 175 175 175 175 mm 175 175 175 175 175 mm 175 175 175 132 132 S 1289.5.7.1 10 11 12 13 S 1289.5.7.1 10 19.0 19.0 19.0 material wet 0 0 0 0 reted Wet Density t/m³ - - - - viton From isture Content 2.0% 2	10 11 12 13 14 REFER TO FIGURE 1 TO FIGURE 1 TO FIGURE 1 FIGURE 1

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRUC Project OFFICER CENTRAL - S Location OFFICER	Te Da	ate Issued ested by ate tested necked by	22/10/2022 SB 06/09/22 JHF				
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	13:30
Test procedure AS 1289.2.1.1 & 5.8.	1						
Test No		16	17	18	19	20	21
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t/m³	2.16	2.06	2.04	2.01	2.04	2.18
Field moisture content	%	14.6	18.0	15.9	15.8	16.4	13.7
Test procedure AS 1289.5.7.1							
Test No		16	17	18 Stan	19 dord	20	21
Compactive effort Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	mm wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m ³	2.20	2.15	2.13	2.13	2.11	2.23
Adjusted Peak Converted Wet Density	t/m ³	2.20	2.15	2.15	2.15	2.11	2.20
Optimum Moisture Content	%	16.5	19.0	18.0	17.0	17.0	16.0
	70	10.0	10.0	10.0	11.0	11.0	10.0
Moisture Variation From		2.0%	1.0%	2.0%	1.0%	0.5%	2.0%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results	relate o						
Density Ratio (R _{HD})	%	98.5	96.0	96.0	95.0	96.5	97.5
	70	00.0	00.0	00.0	00.0		01.0
<i>Material description</i> No 16 - 21 Clay Fill							

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRUC Project OFFICER CENTRAL - S ⁻¹ Location OFFICER	Te Da	ate Issued ested by ate tested necked by	22/10/2022 SB 29/09/22 JHF				
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	10:00
Test procedure AS 1289.2.1.1 & 5.8.	1						
Test No		22	23	24	25	26	27
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t/m³	2.23	2.22	2.22	2.23	2.24	2.21
Field moisture content	%	18.4	17.6	17.1	17.2	18.1	15.0
Test procedure AS 1289.5.7.1							
Test No		22	23	24	25	26	27
Compactive effort				Stan			
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m³	2.26	2.26	2.26	2.28	2.30	2.29
Adjusted Peak Converted Wet Density	<i>t/m</i> ³	-	-	-	-	-	-
Optimum Moisture Content	%	20.5	18.0	19.0	19.5	19.0	17.0
Moisture Variation From		2.0%	0.5%	2.0%	2.0%	1.0%	2.0%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results r	elate o						
•	%	99.0	98.0	98.0	98.0	97.5	96.5
Density Ratio (R _{HD})	70	33.0	30.0	30.0	30.0	91.J	30.5
<i>Material description</i> No 22 - 27 Clay Fill							

Approved Signatory : Justin Fry

		Job No	22600
CIVIL GEOTE	CHNICAL SERVICES	Report No	22600/R006
6 - 8 Rose Aven	ue, Croydon 3136	Date Issued	22/10/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	SB
Project	OFFICER CENTRAL - STAGE 3A	Date tested	04/10/22
Location	OFFICER	Checked by	JHF

Feature EARTHWORKS

Layer thickness

200 mm

Time: 14:00

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		28	29	30	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	2.09	2.10	1.96	-	-	-
Field moisture content	%	16.0	18.1	20.0	-	-	-

Test procedure AS 1289.5.7.1

Test No		28	29	30	-	-	-		
Compactive effort		Standard							
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-		
Percent of oversize material	wet	0	0	0	-	-	-		
Peak Converted Wet Density	t∕m³	2.13	2.15	2.01	-	-	-		
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-		
Optimum Moisture Content	%	18.0	20.5	19.5	-	-	-		

Density Ratio (R _{HD})	%	98.0	97.5	97.5	-	-	-			
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer										
Optimum Moisture Content		dry	dry	dry						
Moisture Variation From		2.0%	2.5%	0.5%	-	-	-			

Material description

No 28 - 30 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry