

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

2nd February 2024

Our Reference: 23639:NB1777

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING OFFICER CENTRAL – STAGE 7 (OFFICER)

Please find attached our Report No's 23639/R001 to 23639/R011 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density was performed in June 2023.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

	PTY LTD (C.	AMPBELLFIE	ELD)	Re De	b No eport No ate Issued ested by	23639 23639/R00 24/08/23 SB
RAL - STAGE	•)	Da	ate tested hecked by	14/08/23 JHF
	Lay	er thickness	200	mm	Time:	12:00
1 & 5.8.1						
	1	2	3	4	5	6
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
						175
						1.95 26.5
1	1	2	3 Stan	4 dard	5	6
mm	19.0	19.0	19.0	19.0	19.0	19.0
wet	0	0	0	0	0	0
1101	1.99	2.01	1.92	1.93	1.96	1.96
t/m³	1.33				1100	1.30
t/m³ Density t/m³	-	-	-	-	-	-
t/m³	- 28.0	- 25.5	- 26.5	- 27.5	- 31.0	- 29.0
t/m³ Density t/m³ %	- 28.0 2.5%	- 25.5 0.0%	- 26.5 2.0%	2.0%	- 31.0 2.0%	-
t/m³ Density t/m³ %	- 28.0 2.5% dry	0.0%	- 26.5 2.0% dry	2.0% dry	- 31.0 2.0% dry	- 29.0 2.5% dry
	1 & 5.8.1 	1 & 5.8.1 1 & 5.8.1 REFER TO FIGURE 1 mm 175 t/m ³ 1.97 % 25.4 1 1 1	1 & 5.8.1 1 2 REFER REFER TO FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 t/m³ 1.97 1.98 % 25.4 25.1 1 2 1 2	1 & 5.8.1 1 2 3 REFER REFER REFER TO FIGURE 1 FIGURE 1 FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 t/m³ 1.97 1.98 % 25.4 25.1 1 2 3 1 2 3	1 & 5.8.1 1 2 3 4 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 175 175 mm 175 175 175 ½ 25.4 25.1 24.3 25.3 1 2 3 4 Standard	1 & 5.8.1 1 2 3 4 5 REFER TO FIGURE 1 mm 175 175 175 175 mm 175 175 175 175 1 2 3 4 5 1 2 3 4 5

Approved Signatory : Justin Fry

8 Rose Avenu Client Project Location	e, Croydon 3136 WINSLOW CONSTRUC OFFICER CENTRAL - S OFFICER		•	AMPBELLFIE	Te De	ate Issued ested by ate tested necked by	29/08/23 SB 14/08/23 JHF	
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	12:30
	lure AS 1289.2.1.1 & 5.8.	1						
Test No			7	8	9	10	11	12
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate	depth below FSL							
Measuremen	t depth	тт	175	175	175	175	175	175
Field wet den	nsity	t∕m³	1.87	1.90	1.80	1.84	1.89	1.91
Field moistur	e content	%	25.4	27.5	26.6	25.5	26.8	27.2
Test proced	lure AS 1289.5.7.1							
Test No			7	8	9	10	11	12
Compactive e	effort			U	Stan			
	k retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
	versize material	wet	0	0	0	0	0	0
	ted Wet Density	t/m ³	1.92	1.94	1.82	1.88	1.92	1.99
	ak Converted Wet Density	t/m ³	-	-	-	-	-	-
	isture Content	%	28.0	25.5	29.0	28.0	29.0	29.0
Mois	ture Variation From		2.5%	1.5%	2.5%	2.5%	2.0%	1.5%
Optim	um Moisture Content		dry	wet	dry	dry	dry	dry
م م	and moisture ratio results	relate o	only to the so	il to the dept	h of test and	not to the ful	l depth of the	e layer
uensity	io(R _{HD})	%	97.5	98.0	99.0	98.0	98.5	96.0

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRUC Project OFFICER CENTRAL - S ⁻ Location OFFICER			AMPBELLFIE	Te Da	ate Issued ested by ate tested necked by	29/08/23 SB 21/08/23 JHF	
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	13:30
Test procedure AS 1289.2.1.1 & 5.8.	1	_				_	-
Test No		13	14	15	16	17	18
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t/m³	1.85	1.86	1.98	1.95	1.96	1.97
Field moisture content	%	28.7	30.4	29.7	30.7	27.1	27.8
Test procedure AS 1289.5.7.1							
Test No		13	14	15	16	17	18
Compactive effort				Stan	dard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.87	1.88	1.99	1.99	1.98	1.99
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	31.0	33.0	32.0	32.5	29.5	29.5
Moisture Variation From		2.0%	2.5%	2.0%	1.5%	2.0%	1.5%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results r	elato (
		-	-			-	-
Density Ratio(R _{HD})	%	99.0	99.0	99.5	97.5	98.5	99.0
<i>Material description</i> No 13 - 18 Clay Fill							

Approved Signatory : Justin Fry

		AMPBELLFIE	ELD)	Τe	•	25/09/23 CV 15/09/23
IAGE						JHF
	Lay	er thickness	200	mm	Time:	12:13
1						
	19	20	21	22	23	24
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
	175	175	175	175	175	175
						1.79
						26.6
	19	20	21	22	23	24
			Stan	dard		
тт	19.0	19.0	19.0	19.0	19.0	19.0
wet	0	0	0	0	0	0
t∕m³	1.88	1.87	1.82	1.81	1.84	1.84
	-	-	-	-	-	-
%	28.5	26.0	27.0	28.5	29.5	29.0
	2.0% dry	0.0%	0.0%	2.0% dry	2.0% dry	2.5% dry
relate c	only to the so	il to the dept	h of test and	not to the fu	II depth of the	e layer
%	99.0	95.0	98.5	97.0	99.0	97.5
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Lay 1 19 REFER TO TO FIGURE 1 mm 175 t/m³ 1.86 % 26.6 mm 19 mm 19.0 wet 0 t/m³ 1.88 t/m³ - % 28.5	TAGE 7 Layer thickness 1 20 1 20 REFER REFER TO FIGURE 1 Imm 175 175 1/m³ 1.86 1.77 % 26.6 26.0 mm 19.0 9.0 mm 19.0 19.0 mm 19.0 19.0 mm 19.0 19.0 mm 19.0 19.0 mm 19.0 20 20 0.0 0 19 20 0 20 0 0 20 0 0 20 0 0 188 1.87 1.87 1/m³ - - % 28.5 26.0	Layer thickness 200 1 19 20 21 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 175 175 mm 175 175 175 1/m³ 1.86 1.77 1.79 % 26.6 26.0 27.2 19 20 21 mm 19.0 19.0 19.0 wet 0 0 0 1.88 1.87 1.82 t/m³ - - % 28.5 26.0 27.0	TORS PTY LTD (CAMPBELLFIELD) Te TAGE 7 Data Layer thickness 200 mm Layer thickness 200 mm 1 20 21 22 REFER REFER REFER TO TO FIGURE 1 FIGURE 1 FIGURE 1 REFER TO mm 175 175 175 175 t/m³ 1.86 1.77 1.79 1.76 % 26.6 26.0 27.2 26.1 19 20 21 22 Standard mm 19.0 19.0 19.0 19.0 wet 0 0 0 0 t/m³ 1.88 1.87 1.82 1.81 t/m³ - - - - % 28.5 26.0 27.0 28.5 2.0% 0.0% 0.0% 2.0% dry	Tested by Date tested Checked by Tested by Date tested Checked by Layer thickness 200 mm Time: 1 20 21 22 23 REFER REFER REFER REFER REFER TO TO FIGURE 1 FIGURE 1 FIGURE 1 REFER TO FIGURE 1 mm 175 175 175 175 175 175 tm^3 1.86 1.77 1.79 1.76 1.82 % 26.6 26.0 27.2 26.1 27.4 19 20 21 22 23 Mm 19.0 19.0 19.0 19.0 19.0 tm^3 1.87 1.82 1.81 1.84 tm^3 28.5 26.0 27.0 28.5 29.5 % 28.5 26.0 27.0 28.5 29.5

Approved Signatory : Justin Fry

Test procedure AS Test No			Lay	er thickness	200		necked by Time:	12.14
Test procedure AS Test No			Lay	er thickness	200	mm	Time:	12.14
Test No								
	5 1289.2.1.1 & 5.8	. 1						
Location			25	26	27	28	29	30
			REFER TO FIGURE 1					
Approximate depth l	elow FSL							
Measurement depth		mm	175	175	175	175	175	175
Field wet density		t∕m³	1.81	1.78	1.81	1.77	1.85	1.79
Field moisture conte	nt	%	24.8	28.2	26.2	22.7	21.7	20.8
Test procedure AS	1289 5 7 1							
Test No	1200.0.1.1		25	26	27	28	29	30
Compactive effort			20		Stan		20	00
Oversize rock retain	ed on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize		wet	0	0	0	0	0	0
Peak Converted We		t/m³	1.84	1.84	1.84	1.82	1.84	1.80
Adjusted Peak Conv	,	t∕m³	-	-	-	-	-	-
Optimum Moisture C	,	%	27.5	31.0	29.0	25.0	24.0	23.0
Moisture Va	riation From		2.5%	2.5%	2.5%	2.5%	2.0%	2.5%
	sture Content		dry	dry	dry	dry	dry	dry
•	oisture ratio results	relate c			ž –			
-			-	-			-	-
Density Ratio (R _H	<i>р</i>)	%	98.5	97.0	98.5	97.5	100.5	99.0

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136ClientWINSLOW CONProjectOFFICER CENTLocationOFFICER		•	AMPBELLFIE	Te Da	ate Issued ested by ate tested hecked by	25/09/23 CV 21/09/23 JHF	
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	10:51
Test procedure AS 1289.2.1.	1 & 5.8.1						
Test No		31	32	33	34	35	36
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t/m³	1.92	1.97	1.90	1.85	1.97	1.98
Field moisture content	%	24.2	22.5	28.7	28.5	22.4	24.3
Toot procedure AS 1200 5 7	1						
Test procedure AS 1289.5.7. Test No	1	31	32	33	34	35	36
Compactive effort		31	32	S Stan			- 30
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m ³	1.91	1.98	1.89	1.85	2.00	1.99
Adjusted Peak Converted Wet D		-	-	-	-	2.00	1.55
Optimum Moisture Content	%	27.0	24.5	31.0	31.0	24.5	27.0
	,,,			0.1.0	0.10		
Moisture Variation From	•	2.5%	2.0%	2.0%	2.0%	2.0%	2.5%
Optimum Moisture Conte		dry	dry	dry	dry	dry	dry
I							
		100.5	99.5	100.5	100.0	-	-
density and moisture ratio	%		33.0	. 100.D	1 100.0	98.5	99.5

Approved Signatory : Justin Fry

Project C	VICAL SERVICES Croydon 3136 WINSLOW CONSTRUC DFFICER CENTRAL - S			AMPBELLFIE	ELD)	Da Te Da	eport No ate Issued ested by ate tested	23639/R00 20/10/23 CV 12/10/23
Location (OFFICER					CI	necked by	JHF
Feature E	EARTHWORKS		Lay	er thickness	200	mm	Time:	09:02
	e AS 1289.2.1.1 & 5.8.	1						
Test No			37	38	39	40	41	42
Location			REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate de	pth below FSL							
Measurement de	epth	тт	175	175	175	175	175	175
Field wet densit	У	t∕m³	1.92	2.08	1.86	1.85	2.06	2.07
Field moisture c	ontent	%	23.5	25.2	22.4	23.4	24.9	24.6
Test procedure	e AS 1289.5.7.1							
Test No			37	38	39	40	41	42
Compactive effo	ort				Star	dard		
Oversize rock re	etained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of overs	size material	wet	0	0	0	0	0	0
Peak Converted	l Wet Density	t∕m³	1.96	2.10	1.89	1.86	2.10	2.10
Adjusted Peak (Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moistu	Ire Content	%	25.5	26.5	22.0	26.0	27.5	25.5
Moisture	e Variation From		2.0%	1.0%	0.5%	2.5%	2.0%	1.0%
0	Moisture Content		dry	dry	wet	dry	dry	dry
Optimum	nd moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the fu	I depth of the	e layer
		%	98.0	98.5	98.5	99.5	98.5	98.5

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

IWORKS	3.1	Lay 43 REFER TO	er thickness 44 REFER	200 45	mm 46	Time: 47	
1289.2.1.1 & 5.8	3.1	REFER		45	46	47	49
		REFER		45	46	47	40
			REFER				48
		FIGURE 1	TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
low FSL							
	mm	175	175	175	175	175	175
	t/m³	2.07	2.07	1.84	1.99	1.97	1.98
4	%	23.5	28.2	28.4	24.5	22.5	30.3
1289.5.7.1		42	44	45	46	47	48
		43	44			41	40
l on sieve	mm	19.0	19.0			19.0	19.0
							0
							1.98
		-	-	-	-	-	-
,	%	23.5	31.0	30.0	27.0	25.0	33.0
tion From		0.0%	2.5%	1 5%	2.0%	2.5%	2.0%
		0.070					dry
	relate o	nly to the so	· · · · · · · · · · · · · · · · · · ·				
		-				•	100.0
)	70	90.0	100.0	30.0	33.0	33.0	100.0
	t 1289.5.7.1 d on sieve aterial Density rted Wet Density ntent ation From ture Content sture ratio results)	t % 1289.5.7.1 d on sieve mm aterial wet Density t/m ³ rted Wet Density t/m ³ ntent % ation From ture Content sture ratio results relate of	% 23.5 1289.5.7.1 43 d on sieve mm 19.0 aterial wet 0 0 Density t/m³ 2.10 rted Wet Density t/m³ ntent % 23.5	t % 23.5 28.2 1289.5.7.1 43 44 d on sieve mm 19.0 19.0 aterial wet 0 0 Density t/m³ 2.10 2.07 rted Wet Density t/m³ - - ntent % 23.5 31.0 ation From 0.0% 2.5% dry sture Content vel to the soil to the dept -	t % 23.5 28.2 28.4 1289.5.7.1 43 44 45 1289.5.7.1 43 44 45 d on sieve mm 19.0 19.0 aterial wet 0 0 0 Density t/m³ 2.10 2.07 1.87 rted Wet Density t/m³ - - - ntent % 23.5 31.0 30.0 ation From 0.0% 2.5% 1.5% dry sture Content 0 0 0 y dry ation From 0.0% 2.5% 1.5% dry dry	t % 23.5 28.2 28.4 24.5 1289.5.7.1 43 44 45 46 Standard d on sieve mm 19.0 19.0 19.0 aterial wet 0 0 0 0 Density t/m³ 2.10 2.07 1.87 2.00 rted Wet Density t/m³ - - - - ntent % 23.5 31.0 30.0 27.0 ation From 0.0% 2.5% 1.5% 2.0% ation From 0.0% 2.5% 1.5% 2.0% sture Content vire Content dry dry dry sture ratio results relate only to the soil to the depth of test and not to the full - -	% 23.5 28.2 28.4 24.5 22.5 $1289.5.7.1$ 43 44 45 46 47 43 44 45 46 47 $51000000000000000000000000000000000000$

Approved Signatory : Justin Fry

8 Rose Avenue, Client Project Location	INICAL SERVICES Croydon 3136 WINSLOW CONSTRUC OFFICER CENTRAL - S OFFICER			AMPBELLFI	Da Te Da	eport No ate Issued ested by ate tested hecked by	23639/R00 09/11/23 CV 31/10/23 JHF	
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	08:20
	re AS 1289.2.1.1 & 5.8.	1	40	50	54	50	L 50	54
Test No			49	50	51	52	53	54
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate d	lepth below FSL							
Measurement		mm	175	175	175	175	175	175
Field wet dens		t∕m³	1.88	1.91	2.03	2.01	1.88	2.03
Field moisture	content	%	22.9	20.7	23.7	21.5	22.4	22.8
Test procedu	re AS 1289.5.7.1							
Test No	10/10/1200.0.7.1		49	50	51	52	53	54
Compactive eff	fort				Stan			•
	retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of ove	rsize material	wet	0	0	0	0	0	0
Peak Converte	ed Wet Density	t∕m³	1.91	1.96	2.05	2.01	1.95	2.04
	Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mois	ture Content	%	23.0	21.5	24.5	22.0	23.0	23.5
				1			T	
	re Variation From		0.0%	0.5%	0.5%	0.5%	0.5%	0.5%
Optimui	m Moisture Content			dry	dry	dry	dry	dry
-	and moisture ratio results	relate o		-				-
-	(R _{HD})	%	98.0	97.5	99.5	100.0	96.5	99.5

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	23639 23639/R010
6 - 8 Rose Aven	ue, Croydon 3136	Date Issued	09/11/23
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	CV
Project	OFFICER CENTRAL - STAGE 7	Date tested	01/11/23
Location	OFFICER	Checked by	JHF

Feature EARTHWORKS

Layer thickness

200 mm

Time: 08:26

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		55	56	57	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	тт	175	175	175	-	-	-
Field wet density	t∕m³	1.93	1.97	1.98	-	-	-
Field moisture content	%	21.8	24.3	23.2	-	-	-

Test procedure AS 1289.5.7.1

Test No		55	56	57	-	-	-	
Compactive effort		Standard						
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-	
Percent of oversize material	wet	0	0	0	-	-	-	
Peak Converted Wet Density	t∕m³	1.96	2.00	2.02	-	-	-	
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-	
Optimum Moisture Content	%	22.0	24.5	23.5	-	-	-	

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer Density Ratio (R _{HD}) % 98.0 98.5 98.5 - - - -							
Optimum Moisture Content	1-1					Laborath of the	
Moisture Variation From		0.0%	0.0%	0.0%	-	-	-

Material description

No 55 - 57 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTECH	NICAL SERVICES	Job No Report No	23639 23639/R011
6 - 8 Rose Avenue,	Croydon 3136	Date Issued	29/11/23
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	CV
Project	OFFICER CENTRAL - STAGE 7	Date tested	23/11/23
Location	OFFICER	Checked by	JHF

Feature EARTHWORKS

Layer thickness

200 mm

Time: 08:14

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		58	59	60	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	тт	175	175	175	-	-	-
Field wet density	t∕m³	1.87	1.93	2.05	-	-	-
Field moisture content	%	21.3	21.4	23.2	-	-	-

Test procedure AS 1289.5.7.1

Test No		58	59	60	-	-	-
Compactive effort		Standard					
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.89	1.96	2.11	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	23.0	23.5	25.0	-	-	-

Density Ratio(R _{HD})	%	99.0	98.5	97.5	-	-	-	
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer								
Optimum Moisture Content		dry	dry	dry				
Moisture Variation From		2.0%	2.0%	2.0%	-	-	-	

Material description

No 58 - 60 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry